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Abstract 

Background Myoelectric prostheses are a popular choice for restoring motor capability following the loss of a limb, 
but they do not provide direct feedback to the user about the movements of the device—in other words, kinesthesia. 
The outcomes of studies providing artificial sensory feedback are often influenced by the availability of incidental 
feedback. When subjects are blindfolded and disconnected from the prosthesis, artificial sensory feedback consist-
ently improves control; however, when subjects wear a prosthesis and can see the task, benefits often deteriorate or 
become inconsistent. We theorize that providing artificial sensory feedback about prosthesis speed, which cannot be 
precisely estimated via vision, will improve the learning and control of a myoelectric prosthesis.

Methods In this study, we test a joint-speed feedback system with six transradial amputee subjects to evaluate how 
it affects myoelectric control and adaptation behavior during a virtual reaching task.

Results Our results showed that joint-speed feedback lowered reaching errors and compensatory movements dur-
ing steady-state reaches. However, the same feedback provided no improvement when control was perturbed.

Conclusions These outcomes suggest that the benefit of joint speed feedback may be dependent on the complex-
ity of the myoelectric control and the context of the task.

Keywords Sensory feedback, Myoelectric prosthesis, Center-out reaching, Compensatory movement, Motor 
adaptation, Motor learning
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Background
For individuals living with upper limb loss or difference, 
myoelectric prostheses have the potential to restore lost 
functionality and improve independence. Significant 
advancements have been made in myoelectric control 
methods, but sensory feedback is still a missing compo-
nent from commercial prostheses. Sensory feedback is 
one of the most commonly requested features of state-
of-the-art prostheses [1], and is critical to able-bodied 
limb control [2]. Consequently, artificial sensory feed-
back has received much attention over the past decade [3, 
4]. Typically, this takes the form of sensory substitution 
feedback, where the information provided from missing 
sensory organs is communicated to the user via an alter-
native method such as vibrotactile [5–10] or auditory 
stimuli [11–13], or via direct nerve stimulation [14–16].

Despite this attention, artificial sensory feedback has 
not yet achieved commercial availability for prostheses, 
which may be related in part to the experimental condi-
tions in which these systems are tested. Frequently, arti-
ficial feedback is tested with subjects blindfolded and 
not connected to the prosthesis. Although these studies 
consistently show the benefit of sensory feedback, they 
omit the incidental sources of feedback that prosthesis 
users rely on every day, such as vision, sound, and pros-
thesis vibration. This incidental feedback often serves the 
same purpose as the artificial feedback being tested (i.e. 
informing the user about the state of the prosthesis), and 
studies have shown this incidental feedback is sufficient 
for some tasks [17]. Therefore, when artificial feedback 
is tested alongside incidental feedback, results become 
inconsistent—some studies suggest discernable benefits 
of artificial feedback alongside incidental feedback, such 
as improved time to target prosthesis position [18], abil-
ity to perform object manipulation tasks [19], and coor-
dination of grasping with the prosthesis [20], however 
the same and other studies also show no changes in other 
aspects of prosthesis use [9, 19, 21–24].

One theory explaining this discrepancy stems from 
the degree of precision of each feedback source. When 
we receive the same information from multiple sources, 
we merge them in accordance with their uncertainty: 
sources with less uncertainty are favored over those with 
greater uncertainty [25, 26]. Therefore, if incidental feed-
back (particularly vision) is more precise than the artifi-
cial feedback being tested, then the tested feedback may 
not meaningfully improve the users understanding of 
their prosthesis movements.

One candidate for sensory feedback which is not 
well estimated by incidental vision is kinesthesia. Prior 
work has suggested that limb speed, and in particular 
joint speed, has high visual uncertainty and can be sup-
plemented with audio feedback to greatly reduce this 

uncertainty [27]. Knowledge of limb speed may aid in 
the formation of internal models of biological and pros-
thetic limb movements, and a previous study has indeed 
suggested that supplemental joint speed feedback may 
improve reaching accuracy during instances of perturbed 
myoelectric control [28]. However, the benefits of such 
feedback requires additional investigation within the 
context of impaired proprioception following amputa-
tion. Proprioceptive organs including muscle spindles 
and Golgi tendon organs are activated differently in an 
amputated limb than they are in intact limb; agonist–
antagonist muscles pairs stimulate these organs dur-
ing movement [29], but this pairing is generally absent 
from amputated limbs. Instead, standard surgical pro-
cedure for upper-limb amputations involves myodesis of 
the muscles to the end of the distal bone, preventing the 
normal passive stretching of antagonist muscles during 
movement and negatively affecting proprioception [30].

The purpose of this study was to investigate the effect 
of joint speed feedback on prosthesis control and adap-
tation to errors during reaching. Transradial amputee 
subjects controlled a virtual 1-DoF myoelectric limb and 
completed center-out reaching tasks under steady-state 
and perturbed dynamics conditions. We quantified con-
trol by measuring trial-by-trial adaptation to self-gen-
erated and perturbation-generated errors to learn how 
quickly myoelectric control users can update their under-
standing of the dynamics and adjust accordingly.

Methods
Subjects
Six subjects with transradial amputation participated in 
this study (Table 1), which was approved by the North-
western University Institutional Review Board; all experi-
ments were performed in accordance with relevant 
guidelines and regulations, and all subjects provided 
informed consent before starting the study.

Experimental setup
Subjects sat in front of a computer monitor displaying a 
virtual arm. A Biometrics twin-axis electrogoniometer 
was attached to the upper and lower arm to measure 
the elbow flexion angle. Goniometer signals were low-
pass filtered at 5 Hz with a 2nd order Butterworth filter. 
Two Delsys Bagnoli electromyographic (EMG) sensors 
measured EMG signals from wrist flexor and extensor 
sites on the residual limb (Fig. 1a). The electrode place-
ment was determined via voluntary muscle contraction 
and palpation (similar to the method used to place elec-
trodes when controlling a myoelectric prosthesis), and 
the reference electrode was placed over the olecranon 
or on the clavicle. EMG signals were high-pass filtered 
at 0.1  Hz, positive-rectified, and low-pass filtered at 
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5  Hz using a 2nd order Butterworth filter. Data were 
acquired at 1000 Hz and downsampled to 100 Hz after 
filtering.

Subjects controlled a virtual two-link arm using the 
elbow goniometer to dictate proximal link position, and 
the wrist EMG sensors to dictate distal link velocity 
(Fig.  1b). The virtual arm started in a neutral position 
on the screen and targets appears around the screen in 
four fixed positions (Fig. 1c). Specifics for the control of 
the arm and the positioning of elements on the screen 
are the same as in our previous study [28]; however, the 
task was mirrored horizontally for left-side amputee 
subjects to align the movement of the virtual arm with 
the subject’s arm.

Subjects controlled the virtual arm to perform ballis-
tic center-out reaches. With the cursor in the home cir-
cle (red hollow circle, Fig.  1c), a ball (grey filled circle) 
would appear above one of four targets. The ball would 
drop and align with the center of the target 0.5  s after 
the arm left the home circle. Subjects were instructed to 
reach towards the target, stopping when the ball reached 
the target, and with the cursor as close to the target as 
possible [31]. If the virtual limb did not come to a stop at 
the end of the trial (defined as both proximal and distal 
links moving slower than 45°/s), the ball was colored red. 
If the limb was successfully stopped but the cursor was 
not within the target, the ball remained grey. However, 
if the cursor was inside the target at the end of the trial 

Table 1 Transradial amputee subject demographics

Subject ID Sex Age Side of 
amputation

Years since 
amputation

Cause of 
amputation

Home prosthesis Familiarity with myoelectric control

TR1 M 71 R 32 Trauma Passive Familiar from participation in research studies

TR2 M 33 L 5 Trauma Myoelectric, multiarticulate hand Daily user of myoelectric pattern recognition, 
5 years

TR3 M 28 R 10 Trauma Body-powered Familiar from participation in research studies

TR4 M 56 R 40 Trauma Myoelectric, multiarticulate hand Daily user of two-site myoelectric control, 
5+ years

TR5 F 60 R 6 Cancer Passive Familiar from participation in research studies

TR6 M 65 L 6 Trauma Body-powered Previous myoelectric pattern recognition user

Fig. 1 Center-out reaching experiment setup for a subject with left-side amputation. a Subject holds their arm in a relaxed posture at their side. 
Attached to the subject’s residual limb, a goniometer (green) measures elbow angle, and EMG sensors (blue) measure EMG amplitude. b Subjects 
perform center-out reaches with a virtual limb (black); goniometer angle controls the angle of the proximal link (or elbow, green), and the EMG 
amplitude controls the speed of the distal link (or wrist, blue). Subjects started with the limb endpoint in the home circle and one of four targets 
would appear. A grey ball would appear above the target; each target could only be reached with a single limb configuration (dashed grey, not 
shown on the screen). When the limb endpoint left the home circle, the ball began to drop, centering on the target after 0.5 s, signifying the end 
of the trial. The virtual task was mirrored for subjects with right-side amputation. c Wrist-driven distal link speed is used for frequency-modulated 
audio feedback, with higher speed corresponding to higher frequency. This audio feedback was played through headphones worn by the subject, 
providing wrist speed feedback
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(and the limb was sufficiently stilled), the ball was colored 
green to indicate a success.

Familiarization
To learn to control the virtual arm, subjects began each 
visit with a familiarization session. During this session, 
subjects were provided time to understand the control-
ler through unstructured exploration (subjects controlled 
the virtual limb with no visible targets), untimed tar-
get reaches (subjects reached towards targets but were 
given as much time as needed to complete each trial), 
and a structured protocol comprising 32 training bal-
listic center-out reaches. The first 16 trials had a speci-
fied reaching order (four sets of 4 reaches towards each 
target), and the second 16 trials had a balanced and ran-
domized reaching order (4 reaches total towards each 
target) (Fig. 2a). No artificial feedback was provided dur-
ing this session.

During the first visit, subjects only completed the 
Familiarization session. During the next two visits, sub-
jects additionally completed a feedback protocol and a no 
feedback protocol in balanced randomized order. Dur-
ing the feedback protocol, subjects wore a pair of noise-
canceling headphones (Bose QuietComfort 35 II) which 
played frequency-modulated tones determined by the 
speed of the wrist-driven distal link, where the pitch 
would increase by one octave for every multiple of 60°/s. 

During the no feedback protocol, subjects wore the noise-
canceling headphones, but no sound was played.

Steady‑state block
To test trial-by-trial adaptation to self-generated errors, 
subjects completed two repetitions of 100 center-out 
reaches, each separated into one set of 60 and one set 
of 40 reaches (Fig. 2b). The order of these sets was rand-
omized across subjects using balanced block randomiza-
tion. Subjects were allowed a short break between sets.

During the set of 60 trials, subjects completed four sets 
of 10 reaches towards each target. During the set of 40 
trials, subjects reached towards targets in a balanced and 
randomized order. After each set, expanding window 
optimization separated initial trials from steady-state tri-
als for post-experiment analysis [32].

Two quantities were extracted from this trial-by-trial 
analysis. Adaptation rate was defined as the proportion 
of error from one trial that was corrected for in the fol-
lowing trial. Bias was defined as the amount of error 
which elicited no correction on average. It describes the 
intended reaching behavior, but is not necessarily the 
same as the average reaching error. This analysis was per-
formed separately on the angular errors of both the elbow 
and the wrist, and was analyzed using a linear mixed 
effects model investigating main and interaction effects 
of the target set (Same Targets (ST) or Different Targets 
(DT)) and the feedback (No Feedback (NFB) or Feedback 
(FB)). A similar analysis was conducted on the magnitude 
of endpoint, elbow, and wrist errors. Subjects were coded 
as random variables, and p-values were adjusted using 
Holm-Bonferroni corrections.

A second stochastic signal processing approach was 
used to filter inherent motor control noise and provide 
unbiased estimates of true adaptation behavior [32–34]. 
This analysis provided outcomes for the internal model 
adaptation rate and the control noise; both were analyzed 
using the same linear mixed effects model as described 
above.

Perturbation block
To test the speed of adaptation to external perturbations 
to the control system, subjects completed Perturbation 
blocks comprising 12 practice trials followed by 8 sets of 
perturbation trials. During each set, subjects started by 
making 8–10 unperturbed reaches towards random tar-
gets. The control system was then perturbed by doubling 
the EMG gain, which increased the speed of the distal 
link and made accurate and precise control more dif-
ficult. Subjects then made 8 reaches with the perturbed 
dynamics, either towards the same target, or towards dif-
ferent targets. Each category was tested in 4 sets of the 
perturbation trials (Fig. 2c). The order of these sets was 

Fig. 2 After one separate familiarization session, subjects completed 
the experimental protocol twice—once with and once without 
audio feedback. The order of the feedback and no feedback sessions 
was randomized across subjects. a The structured protocol for 
familiarization involved a total of 32 reaches: four sets of 4 reaches 
towards each target, and 16 reaches towards targets in balanced 
random order. b The steady-state block involved a total of 100 
reaches: four sets of 15 reaches towards each target, and 40 reaches 
towards targets in balanced random order. The order of same- or 
different-target groupings was randomized across subjects and 
consistent between subject visits. c The Perturbation block started 
with 12 reaches towards targets in random order. After these baseline 
trials, subjects did cycles of 8–10 reaches towards targets in random 
order, followed by either 8 reaches towards the same target, or 8 
reaches towards targets in balanced random order. The order of these 
cycles was randomized across subjects and consistent between 
subject visits. Reaches towards different targets with a dashed border 
indicate that balanced randomization was not enforced, and the 
number of reaches towards targets could differ from one another. 
Figure adapted from Earley et al. [28]
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determined randomly. The entire Perturbation block was 
repeated twice, yielding a total of 24 practice trials and 
16 sets of perturbation trials—8 towards the same target, 
and 8 towards different targets.

Perturbation adaptation of the Euclidean distance 
between the cursor and the target was estimated using an 
exponential decay model which fit a gain ( α ), decay rate 
( � ), and baseline error ( ε∞ ) to the perturbation trial data 
[35–37].

A hierarchical nonlinear mixed effects model described 
in a previous publication was intended to analyze data 
from the perturbation block [28]. However, this method 
was not viable due to the variability of reaches; thus, an 
exponential decay function was fit separately for each 
subject, combining all data for each condition, and the 
coefficients from these subject-based models were com-
pared [38].

Statistical analysis
Statistical analyses were performed using R-4.0.5. Linear 
mixed effects models investigated main and interaction 
effects for each analysis, and Holm-Bonferroni correc-
tions were made for the number of terms in each model. 
Deidentified raw data and code for statistical analysis are 
publicly available on The Open Science Framework [39].

Results
Steady‑state block
Steady-state reaches provide insight into how subjects 
coordinate positional- and myoelectric-controlled joints 
during reaching tasks after adapting to a control scheme, 
and may be used to quantify compensatory movements 
in one joint arising from errors or poor control in the 
other. Figure  3 shows the Euclidean endpoint errors (a) 
and joint angle errors (b, c).1

No significant interactions were found (pmin = 0.628), 
so interaction terms were removed and the mod-
els were rerun [40]. Endpoint errors were reduced 
with joint speed feedback available (FB mean ± SEM: 
3.66 ± 0.65 cm) compared to when feedback was absent 
(NFB: 4.80 ± 0.97  cm, p = 0.047, Fig.  3a). Joint speed 
feedback also significantly reduced the magnitude of 
wrist angle errors (NFB: 15.42 ± 5.43°, FB: 11.94 ± 4.68°; 
p = 0.006, Fig.  3c), but did not significantly affect the 
magnitude of elbow angle errors (NFB: 8.42 ± 2.99°, FB: 
7.42 ± 2.57°; p = 0.563, Fig. 3b). There were no significant 
differences when reaching towards the same or different 
targets for endpoint (ST: 4.26 ± 0.865, DT: 4.21 ± 0.85; 
p = 0.819), elbow (ST: 6.83 ± 2.59°, DT: 9.01 ± 2.92°; 
p = 0.563), or wrist (ST: 12.89 ± 4.88°, DT: 14.47 ± 5.33°; 
p = 0.588) errors.

We conducted an analysis of trial-by-trial adaptation 
to investigate differences in adaptation rates between 
feedback and target conditions, and to identify possible 
compensatory strategies in the reach biases. Our results 
showed no significant interactions between feedback and 
target for elbow bias or rate (pmin = 0.690), so the inter-
action terms were removed and the models rerun [40]. 
We found an improved adaptation rate during reaches 
towards different targets for the elbow (ST: − 0.77 ± 0.03, 
DT: − 0.99 ± 0.05; p < 0.001) and wrist (ST: − 0.76 ± 0.10, 
DT: − 1.02 ± 0.06; p = 0.010) (Fig. 4b), but no significant 
differences for the bias of the elbow (ST: 3.63 ± 0.70, DT: 
3.97 ± 0.78; p = 0.414) and wrist (ST: − 5.48 ± 1.58, DT: 
− 6.73 ± 2.07; p = 0.358) (Fig. 4a).

No difference was observed between feedback 
conditions for wrist bias (NFB: − 7.68 ± 1.85, FB: 
− 4.54 ± 1.61; p = 0.060), but interestingly elbow 
bias was reduced (NFB: 4.40 ± 0.81, FB: 3.24 ± 0.58; 
p = 0.026). No differences were observed between 
feedback conditions for elbow (NFB: − 0.90 ± 0.07, FB: 
− 0.86 ± 0.06; p = 0.436) or wrist adaptation rates (NFB: 
− 0.88 ± 0.10, FB: − 0.90 ± 0.10; p = 0.794). Another 

Fig. 3 Endpoint and wrist angle errors were significantly reduced when wrist speed feedback was provided. Error bars indicate standard 
error of the mean. Errors are shown for reaches towards the same and different targets [1] for endpoint (a), position-controlled elbow (b), and 
myoelectric-controlled wrist (c). (*) indicates p < 0.05, (**) indicates p < 0.01

1 A supplemental variant of Fig.  3, which displays endpoint and joint angle 
errors separately for each reaching target, is provided alongside all other data 
and materials on the Open Science Framework [39].
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interesting observation is that subjects attempted 
to under-reach with the wrist (demonstrated by the 
negative wrist bias) and overreach with the elbow 
(demonstrated by the positive elbow bias). Possible 
explanations for this reaching strategy are presented in 
"Discussion".

To supplement our traditional trial-by-trial analysis, 
we ran a secondary stochastic signal processing analy-
sis. However, the data showed no significant change 
in adaptation rate for the elbow (NFB: 0.58 ± 0.09, FB: 
0.57 ± 0.08; p = 0.996) or the wrist (NFB: 0.63 ± 0.09, 
FB: 0.65 ± 0.09; p = 0.887) (Fig.  5a). Analyzing the con-
trol noise (Q) similarly revealed no significant differ-
ences between feedback conditions for elbow (NFB: 
55.71 ± 15.82  deg2, FB: 46.50 ± 16.38  deg2; p = 0.673) 
or wrist control noise (NFB: 324.58 ± 75.84  deg2, FB: 
205.63 ± 46.98  deg2; p = 0.157) (Fig. 5b).

These results taken together suggest that joint speed 
feedback may improve the general accuracy of reaches 
(Fig.  3) and result in less compensatory movement 
bias of the intact joints (Fig.  4), which may translate to 
an improved confidence in the control of a myoelectric 
prosthesis. Further, the ratios of elbow-to-wrist biases 

may indicate a form to movement-based task optimiza-
tion, such that improvements to myoelectric control can 
be detected in minor changes to bodily compensation 
within a constrained task. Reductions were also seen in 
elbow and wrist control noise (Fig. 5), though these dif-
ferences were not statistically significant.

Perturbation block
Perturbation trials test the ability for a person making 
reaches to adjust to suddenly changing task conditions, 
such as an abrupt change to the controller. Figure 6a, b 
shows the averaged subject responses to perturbation tri-
als. The hierarchical nonlinear mixed effects model used 
in a previous study [28] was unable to run, likely due to 
insufficient and noisy data, thus individual exponen-
tial decay models were fit to each subject’s data for each 
condition, and the resulting coefficients were compared. 
However, no significant factors were uncovered from 
these statistical models (pmin = 0.533).

The magnitude of errors upon initial perturbation was 
not affected by feedback condition (p > 0.999) or tar-
get (p > 0.999). Final errors after adaptation to the per-
turbation were also not affected by feedback condition 

Fig. 4 Trial-by-trial adaptation biases suggests the elbow overreaches to compensate for an underreaching wrist as shown by the opposite signs 
of elbow and wrist biases. However, no changes in trial-by-trial adaptation behavior were observed between feedback conditions. a Trial-by-trial 
adaptation bias. b Trial-by-trial adaptation rate. (*) indicated p < 0.05, (**) indicates p < 0.01, (***) indicates p < 0.001

Fig. 5 A secondary trial-by-trial analysis using stochastic signal processing approach found that a joint-speed feedback had no significant effect on 
adaptation rate for elbow or wrist movements, and b that although control noise was reduced with joint speed feedback for both elbow and wrist, 
these reductions were not significant
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(p = 0.349) or target (p = 0.692). When final errors were 
subtracted from initial errors to determine the total 
improvement across the eight perturbation trials, this 
improvement was also found to not be affected by feed-
back condition (p = 0.563) or target (p = 0.759).

Discussion
This study expanded upon our previous work by inves-
tigating transradial amputee performance during center-
out reaching tasks. These tasks require coordination of 
elbow angle and wrist EMG to complete the reach. This 
paradigm differed from other similar studies into pro-
prioceptive feedback by using a ballistic reach paradigm, 
which prevented subjects from incorporating feedback 
into their task performance and allowed us to investigate 
solely the impact of feedback on improvements to feed-
forward control [10, 13, 41, 42]. Our results provide some 
insight into how artificial joint speed feedback may be 
used to improve control of a myoelectric prosthesis. We 
found evidence that subjects were able to reduce their 
average reaching errors when provided audio feedback 
encoding the joint speed of a myoelectric limb (Fig.  3). 
We also found evidence suggesting the feedback may help 
prosthesis users reduce compensatory movement bias 
(Fig. 4a). However, no significant differences were found 
between feedback conditions for adaptation behavior 
after abrupt perturbations to the controller (Fig. 6).

In some aspects, our results agree with those from our 
previous study with non-amputee participants. Transra-
dial amputee participants were able to complete ballis-
tic center-out reaches requiring simultaneous control of 
positional- and myoelectric joints, in a manner similar 
to the how they may use their prosthesis in a home envi-
ronment. Additionally, the same compensatory behav-
ior was observed in both studies, where subjects would 
strategically under-reach with the wrist and compensate 
by overreaching with the elbow to minimize the distance 
to the target. This manner of compensatory movement 
is common for upper-limb prostheses (though normally 
demonstrated for the trunk and shoulder [43]), and aligns 
with the expected optimal reaching strategy to minimize 
endpoint error—given that only one limb configuration 
can reach each target, any wrist error can be optimally 
compensated with an opposing elbow adjustment of half 
the magnitude. It should be noted that, if reaching tasks 
required wrist flexion instead of wrist extension, the opti-
mal reaching strategy to compensate for excessive flexion 
would be to overreach with the elbow. We also observe 
a more positive wrist error when reaching towards Tar-
get 3 (involving simultaneous extension of both the wrist 
and the elbow) than towards other targets, though inter-
estingly the endpoint errors were lowest.2 This tendency 
may suggest that fine control of wrist extension is more 
difficult when coupled with simultaneous elbow exten-
sion. Alternatively, it may suggest that visual estimation 
of the requirement movement to achieve the target is 
more difficult. Interestingly, while we showed no impact 
of sensory feedback on the average errors in the previous 
study[28], amputee reaches in the present study demon-
strated lower elbow bias, and a trend towards lower wrist 
bias, with feedback available (Fig. 4a).

The present study differs from the previous study with 
respect to steady-state errors; while no significant differ-
ences were observed in endpoint, elbow, or wrist errors 
for non-amputee reaches, transradial amputee endpoint 
and wrist angle errors were significantly improved with 
joint speed feedback. Furthermore, the stochastic analy-
sis reveals an interesting difference between non-ampu-
tee and transradial amputee reaches: while elbow control 
noise is roughly equivalent between populations, the 
control noise of the myoelectric wrist can be more than 
twice as high for transradial amputees compared to non-
amputees [28] (Fig. 5b).

However, where non-amputees demonstrated 
improved reaching errors after adapting to perturbations 
while reaching towards changing targets, transradial 

Fig. 6 Average error traces during perturbation block show that 
feedback generally reduces errors prior to perturbation (as shown by 
the pre-perturbation trials and echoing Fig. 3a) but does not affect 
adaptation behaviors or reaching performance during perturbed 
reaches. Error traces are shown during perturbed reaches towards the 
same target (a) and different targets (b)

2 This can be seen most clearly in the supplemental variant of Fig. 3, available 
on the Open Science Framework [39].
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amputees showed no significant differences in perturba-
tion adaptation behavior. One possible explanation for 
these inconclusive results stems from the heightened 
control noise. With myoelectric control noise for transra-
dial amputees nearly double that of non-amputees, likely 
due to lack of or damage to proprioceptive organs, it is 
possible that this increased control noise led to increased 
internal model uncertainty, decreasing the capacity 
to adapt to perturbations. These trends may extend to 
adaptation behavior after control system perturbation. It 
should be noted that no individuals with congenital limb 
difference were included in this study; we expect control 
noise to be between those of transradial and non-ampu-
tees due to the more natural insertion of residual mus-
cles, however this remains to be investigated.

The absence of incidental feedback may also contrib-
ute to the increased control noise observed in this study. 
When controlling a myoelectric prosthesis, users will 
generally rely on cues such as the sound and vibration of 
the hand as an indirect indicator of speed; the presence 
of these incidental cues in daily life may reduce control 
noise and consequently give rise to differences in adapta-
tion behavior. In contrast, the auditory feedback modal-
ity used in this study provides a “best-case” scenario for 
low feedback uncertainty [27]; consequently, one might 
expect increased control noise when using vibrotactile 
or electrotactile feedback modalities with higher sensory 
uncertainty. This may even be the case when discrete 
vibrotactile feedback is fused with auditory feedback, as 
was seen in a recent study by Engels et al. [13].

Analyses in our current study were limited by the anal-
ysis methods available and the data collected for each. 
Our protocol required subjects to reach for several tar-
gets arranged throughout the reaching space, which 
ensured reaching performance was not localized to any 
one particular region. However, this also required split-
ting up reaches into smaller blocks of consistent reaches 
to prevent subject fatigue. As a result, adaptation mod-
els for self-generated errors were fit on relatively small 
amounts of data; this was especially the case for the 
stochastic signal processing analysis. Furthermore, this 
analysis requires a stationary target, thus reaches towards 
changing targets had to be omitted from this analysis. 
Analyzing self-generated error adaptation using two 
different methods allowed us to partially account for 
the limited data and build a fuller picture of adaptation 
behavior at steady-state.

The hierarchical model used our previous study 
requires sufficient data to fit all parameters across 
all included perturbation conditions [28]. Although 
the intent was to use the same model in this study, the 
smaller number of subjects prevented this model from 
converging. Furthermore, constraining the model 

parameters using insights from steady-state errors did 
not alleviate issues with model convergence [44]. In its 
place, we took an approach previously used in our pilot 
study [38]. In this approach, an individual exponential 
decay model is fit to each subject, for each condition. The 
coefficients from these models were then analyzed using 
a linear mixed effects model. To supplement this analy-
sis, post-hoc comparisons were made on the initial and 
final errors achieved during perturbation trials. However, 
no significant differences were found during perturbation 
trials, whereas differences were found for non-amputee 
reaches.

The outcomes from the stochastic signal process-
ing techniques also warrant additional attention. The 
non-improvement in the adaptation rate of the EMG-
controlled wrist internal model is opposite of what is 
expected from reduced wrist noise. A possible explana-
tion is that the high EMG control noise for transradial 
amputees, more than double than that of non-amputees 
at times, was more substantial than effects of volitional 
adaptation, which may have influenced the internal 
model adaptation rate as calculated using analytical 
methods [33]. It should be reiterated this analysis was 
conducted on relatively small amounts of data, which 
may disproportionately affect the variability or biases of 
calculated internal model adaptation rate.

The findings in this study corroborate those in a recent 
study on the clinical relevance of artificial feedback 
[19]. They conclude that the benefit of sensory feedback 
depends on the complexity of the task and the profi-
ciency of the feedforward control. Our study involves a 
simple task—center-out reaching—made complicated by 
the control scheme. Our pilot study with trans-humeral 
amputees used a more difficult control scheme, and the 
high control noise made control (and adaptation) diffi-
cult [38] However, in our present experiment with trans-
radial amputees, we show that improved feedback can 
reduce the control noise, thereby improving feedforward 
control [34]. This outcome suggests a need to test artifi-
cial sensory feedback systems with amputee patients of 
different levels to determine how beneficial feedback is 
to each population. Developing a more complete under-
standing of which factors determine the degree of ben-
efit for prosthesis feedback can help researchers develop 
clinically impactful artificial sensory feedback which 
improves quality of life for people with amputations.
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